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Magnetoexcitons in finite-size semiconductor quantum wells 
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AbslreeL n e  spectrum of specific elementary mcitations in a manyelectron system, 
i.e. magnetoexdmns, is investigated Ihwretically. It is shown that in finite-size quantum 
wells there exist additional branches of magnetoorcimns in mmparisan with ideal two- 
dimensional systems. n e  new branches differ f" the known branches in their 
dispersion laws. n e  general features of the spectrum for all lypes of magnetoexciton 
are obtained. 

1. Introduction 

The various properties of a two-dimensional electron gas in a strong transverse 
magnetic field have been intensively investigated in recent years. The most important 
feature of such a system is that the one-particle energy levels are discrete. The 
interaction of the electrons at low temperatures leads to the creation of some 
microscopic states such as an incompressible electronic fluid [1,2] and Wigner crystal. 

For better understanding of the many-particle phenomenon it is important to 
consider the different aspects of electron-electron interactions. One interesting 
possibility is the investigation of a specific kind of elementary excitation in the system 
of interacting electrons, namely magnetoexcitons [3,4]. 

The magnetoexciton is the neutral excitation which consists of an electron in an 
empty level connected with a hole in a filled level. This quasi-particle is the exact 
eigenstate of the system of two-dimensional electrons for any integer filling factor 
and may be used as a good approximation otherwise. The magnetoexciton can move 
transvene to a magnetic field H with a two-dimensional momentum p. It was shown 
in [3,4] that the energy gap in the spectrum of magnetoexcitons is determined by the 
one-electron energy (which is equal to the cyclotron energy hw,), but the dispersion 
law is defined by the electron-electron interaction. 

The theory [3,4] predicts a non-monotonic dependence of the energy E of the 
magnetoexciton on the momentum p with an additional local minimum at a finite 
value of p .  The existence of such a singularity in the spectrum was confirmed 
experimentally by Pinczuk et af [5]. 

The theoretical results [3,4] were obtained for the ideal two-dimensional system, 
but in real semiconductor heterostructures or quantum wells the electrons are not 
two-dimensional particles. There also exists a motion along the direction of magnetic 
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field H which is determined by the potential of the quantum well. In this situation any 
one-electron energy level can be described by two quantum numbers: the quantum 
number for the Landau level, i.e. n = 0, 1, 2, . .  ., and the quantum number for the 
level of size quantization, ie. m = 1, 2, 3,. . .. Evely magnetoexciton corresponds to 
the excitation of an electron from a filled energy level to an empty energy level. In 
the ideal two-dimensional system these electron transitions correspond to a change in 
the quantum number n of the Landau level. In quasi-twodimensional systems there 
are some additional branches of magnetoexcitons, connected with a possible change 
in the quantum number m. 

In the present paper the spectrum of the different branches of magnetoexcitons 
is investigated. These excitations may be classified according to the two quantum 
numbers in the corresponding electron transition. It is shown that there are three 
qualitatively different types of magnetoexciton in a quantum well with a finite 
thichess, which have various dispersion laws. The general features of the spectrum 
of different magnetoexciton branches are established. 

2. General relations 

Let us consider the system of quasi-two-dimensional electrons in a strong magnetic 
field directed perpendicular to the quantum well plane (along the z direction). It 
is suggested that in the ground state some energy levels are completely occupied 
by electrons. This means that we have an integer filling factor. The filled levels 
may correspond to the first few values of both the Landau levels n and the size 
quantization levels m. The strong-magnetic-field limit where the cyclotron energy 
f i q  is large compared with the Coulomb energy Eo = ez/eru will be considered, or 
in other words 

ru << a .  (1) 
Here E is the background dielectric constant, rU = ( e H / h ~ ) ' / ~  is the magnetic length, 
a = f iZc/peZ is the Bohr radius and p is the electron mass. 

The important prameter  which characterizes the electron motion in a quantum 
well is the effective width L of the well. In the present paper, only relatively narrow 
quantum wells w4l  be considered for which the condition 

L < a  (2) 
is realized. 

The relation between L and r" may be arbitrary. It should be noted that this 
relation determines the sequence of energy levels. In a very narrow well where 
L < ru the cyclotron energy is smaller than the energy of sue quantization. In this 
situation the filled levels may correspond to the different Landau levels and to the 
ground level of size quantization. This case is close to the ideal two-dimensional 
electron system. In the opposite case of thicker wells where L > T~ the filled levels 
may correspond to the different size quantization levels and to the first Landau level. 

When conditions (1) and (2) are satisfied, the energy of electron4ectron 
interaction is smaller than the difference between the energies of one-electron levels. 
Therefore the quantum numbers of the one-particle problem can be used to describe 
the system of interacting electrons. 

To study the spectrum of magnetoexcitons it is convenient to introduce the 
creation and annihilation operators and a N , L ,  for filled levels and similar 
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operators b L , k ,  and bM,kv  for empty levels. These operators are classified by the 
projection of the wavevector k and quantum numbers N = (n, m) or M = (n'm') 
which include the old quantum numbers n and m. In principle the quantum numbers 
N or M may also include spin but, in the present paper, only the electron excitations 
without any change in spin state are considered. 

The creation and annihilation operators satisfy the common fermionic commuta- 
tion rules 

and the d and b operators anticommute with each other. 

Way: 
The normalized one-electron wavefunction x ( p ,  z )  may be written in the following 

X N ( P A )  = exp(ikz) an(v + k d / W m ( z )  (4) 
where an are the oscillator functions and @,,,(z) are the wavefunctions of the 
electron motion in a quantum well. The Landau gauge A, = H , e / c  is used. 

The interaction Hamiltonian Hint may be written, according to [4,6], in the 
following way: 

The appearance in the Hamiltonian (5) of the p-terms is connected with the 
possibility of representing the exchange interaction as a direct interaction using a 
Fourier transformation [4,6]. 
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The functions L,,,,  are the same as in the two-dimensional problem [4,6]. They 
may be represented through the Laguerre polynomials L;: 

L , , , (q)  = L ; - ~ ' ( s ' / ~ )  exp(-q2/4). 

The influence of the electron motion along the z direction is described by the 
overlap integrals J i j i k , ( q )  (equation (8)). These integrals are slow functions of the 
dimensionless parameter Lq. The behaviour of these functions in the limiting cases 
can be obtained for any concrete wavefunctions +m. Later the following asymptotic 
values are used: 

J . . . . ( q ) =  1:JJ 1-  a.. : J  4 L when q L  1 

S J ? J  :J  4 11 q q L  << l;i $ j (10) J . .  . . ( q )  = p.. L - ZLZ 

J . .  . . ( q )  = J i , ; i , (q )  = C i , / q L  when q L  >> 1. " J J  

The numerical coefficients ai j ,  Pij, P!;) and Ci, depend on the concrete shape of 
the wavefunctions $,,,(z). Because of the orthonormality of these wavefunctions it 
can be shown that all numerical coefficients in (10) are positive. They are equal to 

a.. = - Jdz l  dz2 l1Li(~1)1'1+;(~~)1'I~1 - 221 
' J  L 

C. -  = 2L d r  I+i(z)121+,(z)12. 
I J  J 

As mentioned above, every magnetoexciton corresponds to the transition of an 
electron from the occupied level Nu to the empty level MO. The operator of the 
creation of such a magnetoexciton with momentum p is 

A L o N 0 ( p )  = Cexp( ip ,k )  6 L o k + k N , b - .  (12) 
k 

This operator commutes with the Hamiltonian (5) for the integer filling factors. To 
obtain the spectrum of the magnetoexciton, one can find this commutator. Direct 
calculations give the following result: 

E N o M o ( P )  = ':!MO + '!$!MO + A E N a M o ( P )  (13) 

(14) 

where 
E(u) 

N o M I I = ( n U - n l ) h w c +  'mo- Em, 
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The value E(") (equation (14)) is the energy of the corresponding one-electron 
transitions, and E, is the energy of the sizequantized level m. The other terms 
in (13) are the result of the manyelectron interaction. The p-independent energy 
shift E(') (equation (15)) is the contribution to the magnetoexciton energy due to the 
interaction of the excited electron and the hole with all other electrons in the filled 
kVelS. The last term in square brackets in (15) is equal to zero when we study the 
transition between two different landau levels, but it gives an important contribution 
to the energy shift when the transitions with a change in quantum number m are 
taken into account 

The dispersion of magnetoexcitons is described by the term AEMoNo (equation 
(16)) which depends on the matrix elements for the states No and MO only. 

The general formula (13) contains all the branches of magnetoexcitons. It is 
possible to calculate the energy spectrum for any non-degenerate excitation using the 
corresponding wavefunctions. Besides this, some general results may be obtained for 
all types of magnetoexciton. 

Three different types of magnetoexciton can be distinguished which correspond 
to the various changes in quantum numbers n and m. These are the following: 

(1) the ordinary magnetoexciton, which corresponds to the transition of an 
electron between two Landau levels without any change in the size quantization 
state (only this type of magnetoexciton exists in ideal two-dimensional systems); 

(2) the magnetoexciton which corresponds to the transition of an electron between 
two different levels of size quantization without any change in the Landau level; this 
excitation is called the interlevel magnetoexciton; 

(3) the mixed magnetoexciton where both quantum numbers n and m are changed 
in the electron transition. 

These three types of magnetoexciton have qualitatively different dispersion laws. 
This makes it possible to distinguish between various magnetoexcitons experimentally. 

It should be noted that, when more than one energy level is occupied by electrons, 
some one-electron transitions may have the same energies. The magnetoexcitons 
which mrrespond to the electron transitions with the same energies will be called 
degenerate magnetoexcitons. The main reason for this degeneracy is that the energy 
differences between the nearest Landau levels are the same. In the next section the 
conditions for the absence of degeneracy are established, and some general relations 
for all branches of magnetoexcitons are obtained. 

3. Nondegenerate magnetoexcitons 

When only one energy level is occupied by electrons, all branches of magnetoexcitons 
are non-degenerate. For a larger filling factor the conditions for the existence of 
non-degenerate excitations are different for all types of magnetoexciton. 

3.1. Ordinaty magnetoercitom 

The spectrum for this type of excitation is non-degenerate when all filled levels 
correspond to the first level of size quantization and to different Landau levels, and 
the transition takes place between the nearest Landau levels. The finite size of the 
quantum well results in some quantitative changes in the spectrum in comparison 
with the two-dimensional case [3,4], but the qualitative character of the dispersion 
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law remains the same. The changes in the spectrum are connected with the softening 
of the Coulomb interaction for L f 0 and are quite similar to those obtained for 
the interband exciton in a quantum well [7l. In a formal way, the softening of the 
Coulomb interaction is described by the difference between unity and the overlap 
integral Jllll (equation (8)). It should be noted that the energy of the ordinary 
magnetoexciton at p = 0 is equal to the one-electron energy hw, independent of the 
value of Jlll l .  This is a consequence of the Kohn [SI theorem which states that the 
energy of cyclotron resonance does not depend on the electron-electron interaction. 

For this type of magnetoexciton the general formula for the spectrum according 
to (13) has the following form: 

The momentumdependent part of the energy AEno in the limiting cases of small 
and large momenta p are given by 

A E n 0 ( p )  = Eu(pru/Wnu + 1)/21 

AEno(p) = Eu(Bn0 - fi/pru) 

when P T , / ~  << 1 

when pr,/h >> 1. 
(18) 

In equations (18) the parameter Bn0 depends on the relation between the quantum 
well width L and the magnetic length To. This parameter determines the full width 
of the spectrum of ordinary magnetoexcitons. The analytical expressions for Bn0 can 
be obtained using the asymptotic behaviour of the overlap integrals Jllll (equation 
(10)). They are 

Brio = (7r/2)'/*ynO - a l 1 L / r u  L << ru 
(19) 

B"o = ( ~ , l ~ U / ~ ) ~ n ~ ( L / I ' " ) ~ , l  L >> I'u 

where the numerical coefficient 7, is determined as an integral of the Laguerre 
polynomials L,: 

For the lowest-energy levels these coefficients are given by: yu = f, yI = 7. 

yz = &, .... The numerical coefficient 1, which appears in (19) in the logarithm is 
of the order of unity and may be calculated in a similar way as in the problem of 
interband excitons [7]. For instance, in the case of a transition between the ground 
state (0, 1) and the excited state (1, 1) it has the form 

(21) 
where is the wavefunction of the electron at the first level of size quantization. 
Far the rectangular well with infinite barriers this number is In to = -1.6955. 

The dispersion curve A E ( p )  in the region of intermediate values of p has the 
qualitative behaviour obtained in [3,4] for the case L = 0. The calculations show 
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that there k at least one local minimum of the energy at pru/fi 1. This minimum 
is a result of the different pdependences for the direct and exchange Coulomb 
interaction. The position and relative depth of this minimum have a very slight 
dependence on thC relation between L and T". For higher Landau levels, some 
additional local minima may occur owing to the oscillations of the functions Lnm(q) 
(equation (7)), but as in the two-dimensional case [4] these additional minima are 
very narrow and it k very difficult to observe them experimentally. Later, only 
the main energy minimum is taken into consideration. In fact, for this type of 
magnetoexciton the finite size of the quantum well results only in a decrease in the 
scale of the electron-electron interaction energy, which is described by the parameter 
Bn0 (equation (19)). 

3.2 Interlevel magnefoexcilons 

In a quantum well with the exception of the specially produced parabolic wells the 
energy differences between the size quantization levels are not the same. Therefore in 
principle, non-degenerate interlevel magnetoexcitons which correspond to any change 
in quantum number m may exist. When all filled levels belong to the first Landau 
level, all interlevel magnetoexcitons are non-degenerate. However, when the electrons 
occupy wme different Landau levels, then some of the interlevel magnetoexcitons may 
be degenerate. 

In accordance with the general formula (13) the energy of magnetoexcitons 
corresponding to the transition from the filled level (nu,ml) to the empty level 
(nu, m2) may be represented as follows: 

where 

It can be seen from (22) and (U) that the many-electron correction + 
AEmtmzng (0) to the one-electron energy is not equal to zero in contrast with the 
ordinary magnetoexciton (equation (17)). This correction has the same order of 
magnitude as E 0 L / q ,  and it is much smaller than the differences between the one- 
electron energies due to the parameters (1) and (2). However, this correction as is 
shown below may be larger than the full width of the spectrum in the case of quite 
thick quantum wells. 

The dispersion law has the following behaviour in the limiting cases: 

A E m l m z n 0 ( ~ )  = (EuL/d(Pmlm2 - P!,!!,,Lp/fi) 

AEm,m,n, = ~u(Bm,m,n,  - VPr")  
The numerical coefficients pij and are determined in (11). The dimensionless 
parameter depends on the relation between L and 7". in a similar way 
to the parameter B,, (equation (19)). For different values of the ratio L / r ,  this 
dependence is equal to 

P < m i n { h / l ; h / d  

P > max{fi/L;h/r,}. 
(24) 
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where 

and for the first few Landau levels the numerical coefficients i., are T,, = 1, qi = ;, 
T2 = $, . . .. The numerical coefficient tmlm?no in (25) may be expressed in a similar 
way to the coefficient t , ,  (equation (21)) using the wavefunctions $,,, instead of 

It can be seen from (24) that in the region of small momenta p the energy of an 
interlevel magnetoexciton decreases with increasing p. In the region of large momenta 
the energy increases with increasing p. Therefore at some finite value of momentum, 
p = p,,, the energy has an absolute minimum. The position and the depth of this 
minimum depend on the relation between L and rO. The value of p,, is equal to 
f i L z / r i  when L < T,, and h / L  when L > T,,. In the last case the energy differences 
are given by E(0)  - E(p,) = E,, and have an order of magnitude comparable with 
the full width of the spectrum. 

For p > p, the energy of an interlevel magnetoexciton increases slowly with 
increasing momentum. This kind of dispersion is quite similar to that obtained for 
the U+ spin exciton in (41. 

The existence of the absolute minimum of the energy at a finite value of p must 
produce an unusual interaction between the interlevel magnetoexciton and phonons 
and impurities. We may expect this kind of excitation to have a larger linewidth in 
the optical spectrum than other branches of magnetoexcitons do. 

3.3. Mired magnetoercitons 

All excitations of this type are non-degenerate when the filled levels belong to the 
first Landau level. When more than one Landau level is occupied by the electrons, 
then nondegenerate excitations may also exist. They occur for transitions of the 
electron from the filled level with a maximum quantum number n to the first Landau 
level with an arbitraly change in the quantum number m. 

As in the case of interlevel magnetoexcitons the electron-electron interaction 
gives non-zero corrections to the one-particle energy levels. These corrections are 
of the order of E,,L/r,,. The main characteristic feature of the spectrum of mixed 
magnetoexcitons is the stronger p-dependence in the region of small momentum. For 
the magnetoexciton which corresponds to the transition of an electron from the state 
(.,,,mu) to the state (nimi) this dependence according to (16) is 
AEno,,,,,,(~) = EoU(P,,,, L / T U ) ( P ~ ~ ) ~ ~ "  {n!/2A" ni![(n - .I)!]*) 

where A n  = nu - n i  is the change in the Landau level quantum number. The 
numerical factor in (27a) is written for the case nu > n,. The dimensionless 
parameter s is of the order of unity when L < T,, and of the order Of 
( ru/L)21n(L/ru)  when L > T,,. 

For sufficiently large mlues of momentum p the usual dependence of the 
dispersion law on p is realized: 

where the parameter Bnom,,,,, depends on the ratio L/T" in a similar way to (19) 
and (25). 

In the region of intermediate momenta pr,,/h U 1, the dispersion curve has a 
local minimum similar to that in the spectrum of ordinary magnetoexcitons. 

- 8(pTo/h)2n p < min{h/L,h/r,) (27a) 

AE, ,omon ,mt (~ )  = Eu (Bnomonlm, - h/Pru) (276) 
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4. Degenerate magnetoexcitons 

As mentioned above, the main reason for the existence of degenerate magnetoexcitons 
is that the differences between the energies of nearest Landau levels are the same. 
It should be noted that this causes the degeneration of magnetoexcitons of the same 
type. 

Tb find the spectrum of the degenerate magnetoexcitons, one can calculate the 
commutator of the Hamiltonian ( 5 )  with the linear combination of the excitonic 
operators (12). As a result a system of linear equations can be obtained. This 
system contains main terms similar to (13) and some additional terms which describe 
the interaction of different magnetoexcitons. In the case of twofold degeneracy of 
magnetoexcitons with quantum numbers Mu, Nu and M,, NI these additional terms 
are 

The interaction (28) removes the degeneracy according to the common rules of 
quantum mechanics. The calculation shows that for magnetoexcitons of the same 
type the interaction (28) does not produce any qualitative changes in the spectrum. 
The most important role is played by the interaction energy (28) at p = 0 which gives 
the splitting 6EMMoNo;M,N,(0)  of the energy gap of magnetoexcitons. This splitting 
has the order of magnitude 

6E Eu( L / v u )  when L vu 

6E21 E, (v , /L )  when L >> vu. 

The splitting (29) is smaller than the full width of the spectrum (19) or (25) 
although in a thick quantum well this is a logarithmic function. This is the 
consequence of the orthogonality of the wavefunctions from the different one-electron 
levels. As a result the overlap integrals in (28) are smaller than those in (17) and 

The position and the relative depth of the energy minimum in dispersion curves 
depend on the interaction (28) very slightly and they can be described by the equation 
for nondegenerate magnetoexcitons (equation (16)) with good accuracy. 

Apart from the degeneracy of the energies of the same type of magnetoexciton 
considered above, it is possible that there is an occasional energy degeneracy of 
different types of magnetoexciton. This occurs when the energy difference between 
two levels of size quantization is proportional to the cyclotron energy. The spectrum 
in this case depends essentially on the exact relations between the one-electron energy 
levels. lb obtain the spectrum of interacting magnetoexcitons it is necessary to solve 
the system of linear equations with interaction (28). This has to be done for every 
special quantum well structure. In a general case it may be noted that the interacting 
energy cannot exceed the value for one type of magnetoexciton (equation (29)). 

5. Discussion 

For the new types of magnetoexciton, namely interlevel and mixed magnetoexcitons, 
considered above, both the energy gap and the dispersion law depend on the many- 
particle interactions. Both these values have to mry with the magnetic field and 

(29) 

(23). 
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mncentration of the electrons. This makes it possible to use optical measurements in 
order to obtain additional information on the many-particle correlations in the system 
under consideration. 

A similar approach can be applied to the investigation of the spin exciton 
spectrum. In a finite-size quantum well there are a number of different types of spin 
exciton corresponding to various combinations of quantum numbers n, m and s. The 
main difference in the calculation of the spectrum of spin excitons is the following. 
The first term in equation (16) caused by the exchange interaction is equal to zero for 
all types of spin exciton. As a result the dispersion curves have to be different from 
those for magnetoexcitons, especially in the region of small momenta. Nevertheless 
the full width of the spectrum of spin excitons must decrease with increase in the 
quantum well width because of the softening of Coulomb interaction as in the case of 
magnetoexcitons. This may be important, for instance, for the better understanding of 
recent experimental results on nuclear-spin relaxation [9]. The theoretical approach 
based on the properties of two-dimensional spin excitons was successfully used to 
describe these experiments [IO]. 

Another possible application of the results obtained is the theory of 
magnetoluminescence of the quantum wells with nonequilibrium'electrons and holes 
created by optical pumping. In the paper by E3ychkov and Rashba [ll] the mncept 
of two-dimensional magnetoexcitons was used to describe the available experimental 
data [12,13]. Qualitative agreement between theory and experiment was obtained. 

However, the experiments [12,13] show different dependences of the luminescence 
lines on the concentration of carriers in wrious quantum well structures. These data 
have no obvious explanation at present. The discrepancy between experimental results 
in 1121 and in [13] may be understood by taking into consideration the additional 
branches of magnetoexcitons. This work is now in progress. 
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